A Factorization Theorem for Affine Kazhdan-lusztig Basis Elements

نویسنده

  • JONAH BLASIAK
چکیده

The lowest two-sided cell of the extended affine Weyl group We is the set {w ∈ We : w = x · w0 · z, for some x, z ∈ We}, denoted W(ν). We prove that for any w ∈ W(ν), the canonical basis element C w can be expressed as 1 [n]!χλ(Y )C ′ v1w0 C w0v2 , where χλ(Y ) is the character of the irreducible representation of highest weight λ in the Bernstein generators, and v1 and v −1 2 are what we call primitive elements. Primitive elements are naturally in bijection with elements of the finite Weyl group Wf ⊆ We, thus this theorem gives an expression for any C w, w ∈ W(ν) in terms of only finitely many canonical basis elements. After completing this paper, we realized that this result was first proved by Xi in [8]. The proof given here is significantly different and somewhat longer than Xi’s, however our proof has the advantage of being mostly self-contained, while Xi’s makes use of results of Lusztig from [6] and Cells in affine Weyl groups I-IV and the positivity of Kazhdan-Lusztig coefficients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Dual Canonical and Kazhdan-lusztig Bases and 3412, 4231-avoiding Permutations

Using Du’s characterization of the dual canonical basis of the coordinate ring O(GL(n,C)), we express all elements of this basis in terms of immanants. We then give a new factorization of permutations w avoiding the patterns 3412 and 4231, which in turn yields a factorization of the corresponding Kazhdan-Lusztig basis elements C w(q) of the Hecke algebra Hn(q). Using the immanant and factorizat...

متن کامل

Factorization of Kazhdan–Lusztig elements for Grassmanians

We show that the Kazhdan-Lusztig basis elements Cw of the Hecke algebra of the symmetric group, when w ∈ Sn corresponds to a Schubert subvariety of a Grassmann variety, can be written as a product of factors of the form Ti + fj(v), where fj are rational functions.

متن کامل

Categories of Modules over an Affine Kac–moody Algebra and Finiteness of the Kazhdan–lusztig Tensor Product

To each category C of modules of finite length over a complex simple Lie algebra g, closed under tensoring with finite dimensional modules, we associate and study a category AFF(C)κ of smooth modules (in the sense of Kazhdan and Lusztig [13]) of finite length over the corresponding affine Kac–Moody algebra in the case of central charge less than the critical level. Equivalent characterizations ...

متن کامل

On 321-Avoiding Permutations in Affine Weyl Groups

We introduce the notion of 321-avoiding permutations in the affine Weyl group W of type An−1 by considering the group as a George group (in the sense of Eriksson and Eriksson). This enables us to generalize a result of Billey, Jockusch and Stanley to show that the 321-avoiding permutations in W coincide with the set of fully commutative elements; in other words, any two reduced expressions for ...

متن کامل

Categories of Modules over an Affine Kac–moody Algebra and the Kazhdan–lusztig Tensor Product

To each category C of modules of finite length over a complex simple Lie algebra g, closed under tensoring with finite dimensional modules, we associate and study a category AFF(C)κ of smooth modules (in the sense of Kazhdan and Lusztig [9]) of finite length over the corresponding affine Kac– Moody algebra in the case of central charge less than the critical level. Equivalent characterizations ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009